Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Publication year range
1.
Health Sci Rep ; 7(3): e1965, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38524774

ABSTRACT

Background and Aim: Until the May 2022 Monkeypox (MPXV) outbreak, which spread rapidly to many non-endemic countries, the virus was considered a viral zoonosis limited to some African countries. The Andalusian circuit of genomic surveillance was rapidly applied to characterize the MPXV outbreak in the South of Spain. Methods: Whole genome sequencing was used to obtain the genomic profiles of samples collected across the south of Spain, representative of all the provinces of Andalusia. Phylogenetic analysis was used to study the relationship of the isolates and the available sequences of the 2022 outbreak. Results: Whole genome sequencing of a total of 160 MPXV viruses from the different provinces that reported cases were obtained. Interestingly, we report the sequences of MPXV viruses obtained from two patients who died. While one of the isolates bore no noteworthy mutations that explain a potential heightened virulence, in another patient the second consecutive genome sequence, performed after the administration of tecovirimat, uncovered a mutation within the A0A7H0DN30 gene, known to be a prime target for tecovirimat in its Vaccinia counterpart. In general, a low number of mutations were observed in the sequences reported, which were very similar to the reference of the 2022 outbreak (OX044336), as expected from a DNA virus. The samples likely correspond to several introductions of the circulating MPXV viruses from the last outbreak. The virus sequenced from one of the two patients that died presented a mutation in a gene that bears potential connections to drug resistance. This mutation was absent in the initial sequencing before treatment.

2.
Int J Mol Sci ; 24(3)2023 Jan 26.
Article in English | MEDLINE | ID: mdl-36768752

ABSTRACT

Recombination is an evolutionary strategy to quickly acquire new viral properties inherited from the parental lineages. The systematic survey of the SARS-CoV-2 genome sequences of the Andalusian genomic surveillance strategy has allowed the detection of an unexpectedly high number of co-infections, which constitute the ideal scenario for the emergence of new recombinants. Whole genome sequence of SARS-CoV-2 has been carried out as part of the genomic surveillance programme. Sample sources included the main hospitals in the Andalusia region. In addition to the increase of co-infections and known recombinants, three novel SARS-CoV-2 delta-omicron and omicron-omicron recombinant variants with two break points have been detected. Our observations document an epidemiological scenario in which co-infection and recombination are detected more frequently. Finally, we describe a family case in which co-infection is followed by the detection of a recombinant made from the two co-infecting variants. This increased number of recombinants raises the risk of emergence of recombinant variants with increased transmissibility and pathogenicity.


Subject(s)
COVID-19 , Coinfection , Humans , Coinfection/epidemiology , COVID-19/epidemiology , SARS-CoV-2/genetics , Biological Evolution , Genomics
SELECTION OF CITATIONS
SEARCH DETAIL
...